Entrer un problème...
Pré-calcul Exemples
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Étape 2.1
Associez et .
Étape 2.2
Utilisez la forme pour déterminer les valeurs de , et .
Étape 2.3
Étudiez la forme du sommet d’une parabole.
Étape 2.4
Déterminez la valeur de en utilisant la formule .
Étape 2.4.1
Remplacez les valeurs de et dans la formule .
Étape 2.4.2
Simplifiez le côté droit.
Étape 2.4.2.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.4.2.2
Annulez le facteur commun de .
Étape 2.4.2.2.1
Annulez le facteur commun.
Étape 2.4.2.2.2
Réécrivez l’expression.
Étape 2.4.2.3
Multipliez .
Étape 2.4.2.3.1
Multipliez par .
Étape 2.4.2.3.2
Multipliez par .
Étape 2.5
Déterminez la valeur de en utilisant la formule .
Étape 2.5.1
Remplacez les valeurs de , et dans la formule .
Étape 2.5.2
Simplifiez le côté droit.
Étape 2.5.2.1
Simplifiez chaque terme.
Étape 2.5.2.1.1
Simplifiez le numérateur.
Étape 2.5.2.1.1.1
Appliquez la règle de produit à .
Étape 2.5.2.1.1.2
Élevez à la puissance .
Étape 2.5.2.1.1.3
Élevez à la puissance .
Étape 2.5.2.1.2
Multipliez par .
Étape 2.5.2.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.5.2.1.4
Multipliez .
Étape 2.5.2.1.4.1
Multipliez par .
Étape 2.5.2.1.4.2
Multipliez par .
Étape 2.5.2.2
Soustrayez de .
Étape 2.6
Remplacez les valeurs de , et dans la forme du sommet .
Étape 3
Remplacez par dans l’équation .
Étape 4
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 5
Étape 5.1
Associez et .
Étape 5.2
Utilisez la forme pour déterminer les valeurs de , et .
Étape 5.3
Étudiez la forme du sommet d’une parabole.
Étape 5.4
Déterminez la valeur de en utilisant la formule .
Étape 5.4.1
Remplacez les valeurs de et dans la formule .
Étape 5.4.2
Simplifiez le côté droit.
Étape 5.4.2.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.4.2.2
Annulez le facteur commun de .
Étape 5.4.2.2.1
Annulez le facteur commun.
Étape 5.4.2.2.2
Réécrivez l’expression.
Étape 5.4.2.3
Multipliez .
Étape 5.4.2.3.1
Multipliez par .
Étape 5.4.2.3.2
Multipliez par .
Étape 5.5
Déterminez la valeur de en utilisant la formule .
Étape 5.5.1
Remplacez les valeurs de , et dans la formule .
Étape 5.5.2
Simplifiez le côté droit.
Étape 5.5.2.1
Simplifiez chaque terme.
Étape 5.5.2.1.1
Simplifiez le numérateur.
Étape 5.5.2.1.1.1
Appliquez la règle de produit à .
Étape 5.5.2.1.1.2
Élevez à la puissance .
Étape 5.5.2.1.1.3
Élevez à la puissance .
Étape 5.5.2.1.2
Multipliez par .
Étape 5.5.2.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.5.2.1.4
Multipliez .
Étape 5.5.2.1.4.1
Multipliez par .
Étape 5.5.2.1.4.2
Multipliez par .
Étape 5.5.2.2
Soustrayez de .
Étape 5.6
Remplacez les valeurs de , et dans la forme du sommet .
Étape 6
Remplacez par dans l’équation .
Étape 7
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 8
Étape 8.1
Déterminez le dénominateur commun.
Étape 8.1.1
Multipliez par .
Étape 8.1.2
Multipliez par .
Étape 8.1.3
Multipliez par .
Étape 8.1.4
Multipliez par .
Étape 8.1.5
Multipliez par .
Étape 8.1.6
Multipliez par .
Étape 8.1.7
Multipliez par .
Étape 8.1.8
Réorganisez les facteurs de .
Étape 8.1.9
Multipliez par .
Étape 8.1.10
Réorganisez les facteurs de .
Étape 8.1.11
Multipliez par .
Étape 8.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.3
Simplifiez chaque terme.
Étape 8.3.1
Multipliez par .
Étape 8.3.2
Multipliez par .
Étape 8.4
Simplifiez en ajoutant des nombres.
Étape 8.4.1
Additionnez et .
Étape 8.4.2
Additionnez et .
Étape 9
C’est la forme d’un cercle. Utilisez cette forme pour déterminer le centre et le rayon du cercle.
Étape 10
Faites correspondre les valeurs dans ce cercle avec celles de la forme normalisée. La variable représente le rayon du cercle, représente le décalage x par rapport à l’origine et représente le décalage y par rapport à l’origine.
Étape 11
Le centre du cercle se trouve sur .
Centre :
Étape 12
Ces valeurs représentent les valeurs importantes pour représenter graphiquement et analyser un cercle.
Centre :
Rayon :
Étape 13