Pré-calcul Exemples

Trouver le domaine de définition et l'ensemble d'arrivée (y^2)/9-(x^2)/25=1
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Multipliez les deux côtés de l’équation par .
Étape 3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.1
Annulez le facteur commun.
Étape 3.1.1.2
Réécrivez l’expression.
Étape 3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Appliquez la propriété distributive.
Étape 3.2.1.2
Multipliez par .
Étape 3.2.1.3
Associez et .
Étape 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2
Associez et .
Étape 5.3
Associez les numérateurs sur le dénominateur commun.
Étape 5.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Factorisez à partir de .
Étape 5.4.2
Factorisez à partir de .
Étape 5.4.3
Factorisez à partir de .
Étape 5.5
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Factorisez la puissance parfaite dans .
Étape 5.5.2
Factorisez la puissance parfaite dans .
Étape 5.5.3
Réorganisez la fraction .
Étape 5.6
Extrayez les termes de sous le radical.
Étape 5.7
Élevez à la puissance .
Étape 5.8
Associez et .
Étape 6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Soustrayez des deux côtés de l’inégalité.
Étape 8.2
Comme le côté gauche a une puissance paire, il est toujours positif pour tous les nombres réels.
Tous les nombres réels
Tous les nombres réels
Étape 9
Le domaine est l’ensemble des nombres réels.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 10
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 11
Déterminez le domaine et la plage.
Domaine :
Plage :
Étape 12