Pré-calcul Exemples

Trouver les racines/zéros en cherchant les racines rationnelles avec le lemme de Gauss 2x^3-3x^2-4x+6=0
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Simplifiez l’expression. Dans ce cas, l’expression est égale à donc est une racine du polynôme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Appliquez la règle de produit à .
Étape 4.1.2
Élevez à la puissance .
Étape 4.1.3
Élevez à la puissance .
Étape 4.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Factorisez à partir de .
Étape 4.1.4.2
Annulez le facteur commun.
Étape 4.1.4.3
Réécrivez l’expression.
Étape 4.1.5
Appliquez la règle de produit à .
Étape 4.1.6
Élevez à la puissance .
Étape 4.1.7
Élevez à la puissance .
Étape 4.1.8
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.8.1
Associez et .
Étape 4.1.8.2
Multipliez par .
Étape 4.1.9
Placez le signe moins devant la fraction.
Étape 4.1.10
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.10.1
Factorisez à partir de .
Étape 4.1.10.2
Annulez le facteur commun.
Étape 4.1.10.3
Réécrivez l’expression.
Étape 4.1.11
Multipliez par .
Étape 4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.2
Soustrayez de .
Étape 4.3
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Écrivez comme une fraction avec le dénominateur .
Étape 4.3.2
Multipliez par .
Étape 4.3.3
Multipliez par .
Étape 4.3.4
Écrivez comme une fraction avec le dénominateur .
Étape 4.3.5
Multipliez par .
Étape 4.3.6
Multipliez par .
Étape 4.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Multipliez par .
Étape 4.5.2
Multipliez par .
Étape 4.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Additionnez et .
Étape 4.6.2
Divisez par .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Ensuite, déterminez les racines du polynôme restant. Le degré du polynôme a été réduit de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
  
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
  
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.7
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
 
Étape 6.8
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
 
Étape 6.9
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.10
Simplifiez le polynôme quotient.
Étape 7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Factorisez à partir de .
Étape 7.2
Factorisez à partir de .
Étape 7.3
Factorisez à partir de .
Étape 8
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 8.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 8.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 9
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 10
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Définissez égal à .
Étape 10.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Ajoutez aux deux côtés de l’équation.
Étape 10.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Divisez chaque terme dans par .
Étape 10.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.2.1.1
Annulez le facteur commun.
Étape 10.2.2.2.1.2
Divisez par .
Étape 11
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Définissez égal à .
Étape 11.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Ajoutez aux deux côtés de l’équation.
Étape 11.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 11.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 11.2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 11.2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 13
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :
Étape 14