Pré-calcul Exemples

Transformer en un intervalle 4x^4-25x^2+36<=0
Étape 1
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 2
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme plus
Étape 2.1.3
Appliquez la propriété distributive.
Étape 2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.2.1.2
Divisez par .
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Ajoutez aux deux côtés de l’équation.
Étape 6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 8
Résolvez la première équation pour .
Étape 9
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 9.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Réécrivez comme .
Étape 9.2.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1
Réécrivez comme .
Étape 9.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 9.2.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.3.1
Réécrivez comme .
Étape 9.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 9.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 9.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 9.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 10
Résolvez la deuxième équation pour .
Étape 11
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Supprimez les parenthèses.
Étape 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 11.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Réécrivez comme .
Étape 11.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 11.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 11.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 11.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 11.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12
La solution à est .
Étape 13
Utilisez chaque racine pour créer des intervalles de test.
Étape 14
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.1.2
Remplacez par dans l’inégalité d’origine.
Étape 14.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 14.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.2.2
Remplacez par dans l’inégalité d’origine.
Étape 14.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 14.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.3.2
Remplacez par dans l’inégalité d’origine.
Étape 14.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 14.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.4.2
Remplacez par dans l’inégalité d’origine.
Étape 14.4.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 14.5
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.5.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.5.2
Remplacez par dans l’inégalité d’origine.
Étape 14.5.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 14.6
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Faux
Faux
Vrai
Faux
Vrai
Faux
Étape 15
La solution se compose de tous les intervalles vrais.
ou
Étape 16
Convertissez l’inégalité en une notation d’intervalle.
Étape 17