Entrer un problème...
Pré-calcul Exemples
Étape 1
Multiply each term by a factor of that will equate all the denominators. In this case, all terms need a denominator of .
Étape 2
Multipliez l’expression par un facteur de pour créer le plus petit dénominateur commun de .
Étape 3
Déplacez à gauche de .
Étape 4
Étape 4.1
Divisez par .
Étape 4.2
Multipliez par .
Étape 5
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 6
Étape 6.1
La valeur exacte de est .
Étape 7
La fonction sinus est négative dans les troisième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez la solution de pour déterminer un angle de référence. Ajoutez ensuite cet angle de référence à pour déterminer la solution dans le troisième quadrant.
Étape 8
Étape 8.1
Soustrayez de .
Étape 8.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 9
Étape 9.1
La période de la fonction peut être calculée en utilisant .
Étape 9.2
Remplacez par dans la formule pour la période.
Étape 9.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 9.4
Divisez par .
Étape 10
Étape 10.1
Ajoutez à pour déterminer l’angle positif.
Étape 10.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 10.3
Associez les fractions.
Étape 10.3.1
Associez et .
Étape 10.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.4
Simplifiez le numérateur.
Étape 10.4.1
Multipliez par .
Étape 10.4.2
Soustrayez de .
Étape 10.5
Indiquez les nouveaux angles.
Étape 11
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier