Pré-calcul Exemples

Trouver les racines (zéros) x^4-3x^3-27x+81
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.1.3
Réécrivez comme .
Étape 2.1.4
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, et .
Étape 2.1.5
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.5.1.1
Déplacez à gauche de .
Étape 2.1.5.1.2
Élevez à la puissance .
Étape 2.1.5.2
Supprimez les parenthèses inutiles.
Étape 2.1.6
Associez les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.6.1
Élevez à la puissance .
Étape 2.1.6.2
Élevez à la puissance .
Étape 2.1.6.3
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.6.4
Additionnez et .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Définissez le égal à .
Étape 2.3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.4.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.4.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1.1
Élevez à la puissance .
Étape 2.4.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1.2.1
Multipliez par .
Étape 2.4.2.3.1.2.2
Multipliez par .
Étape 2.4.2.3.1.3
Soustrayez de .
Étape 2.4.2.3.1.4
Réécrivez comme .
Étape 2.4.2.3.1.5
Réécrivez comme .
Étape 2.4.2.3.1.6
Réécrivez comme .
Étape 2.4.2.3.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1.7.1
Factorisez à partir de .
Étape 2.4.2.3.1.7.2
Réécrivez comme .
Étape 2.4.2.3.1.8
Extrayez les termes de sous le radical.
Étape 2.4.2.3.1.9
Déplacez à gauche de .
Étape 2.4.2.3.2
Multipliez par .
Étape 2.4.2.4
La réponse finale est la combinaison des deux solutions.
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3