Pré-calcul Exemples

Simplifier/Condenser logarithme de 2x-2+ logarithme de x-6=2
Étape 1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Utilisez la propriété du produit des logarithmes, .
Étape 1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Appliquez la propriété distributive.
Étape 1.2.2
Appliquez la propriété distributive.
Étape 1.2.3
Appliquez la propriété distributive.
Étape 1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1.1
Déplacez .
Étape 1.3.1.1.2
Multipliez par .
Étape 1.3.1.2
Multipliez par .
Étape 1.3.1.3
Multipliez par .
Étape 1.3.2
Soustrayez de .
Étape 2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Élevez à la puissance .
Étape 3.3
Soustrayez des deux côtés de l’équation.
Étape 3.4
Soustrayez de .
Étape 3.5
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1.1
Factorisez à partir de .
Étape 3.5.1.2
Factorisez à partir de .
Étape 3.5.1.3
Factorisez à partir de .
Étape 3.5.1.4
Factorisez à partir de .
Étape 3.5.1.5
Factorisez à partir de .
Étape 3.5.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.5.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.5.2.2
Supprimez les parenthèses inutiles.
Étape 3.6
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Définissez égal à .
Étape 3.7.2
Ajoutez aux deux côtés de l’équation.
Étape 3.8
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.8.1
Définissez égal à .
Étape 3.8.2
Soustrayez des deux côtés de l’équation.
Étape 3.9
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Excluez les solutions qui ne rendent pas vrai.