Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Complétez le carré pour .
Étape 1.2.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 1.2.2
Étudiez la forme du sommet d’une parabole.
Étape 1.2.3
Déterminez la valeur de en utilisant la formule .
Étape 1.2.3.1
Remplacez les valeurs de et dans la formule .
Étape 1.2.3.2
Annulez le facteur commun à et .
Étape 1.2.3.2.1
Factorisez à partir de .
Étape 1.2.3.2.2
Annulez les facteurs communs.
Étape 1.2.3.2.2.1
Factorisez à partir de .
Étape 1.2.3.2.2.2
Annulez le facteur commun.
Étape 1.2.3.2.2.3
Réécrivez l’expression.
Étape 1.2.3.2.2.4
Divisez par .
Étape 1.2.4
Déterminez la valeur de en utilisant la formule .
Étape 1.2.4.1
Remplacez les valeurs de , et dans la formule .
Étape 1.2.4.2
Simplifiez le côté droit.
Étape 1.2.4.2.1
Simplifiez chaque terme.
Étape 1.2.4.2.1.1
Élevez à la puissance .
Étape 1.2.4.2.1.2
Multipliez par .
Étape 1.2.4.2.1.3
Annulez le facteur commun de .
Étape 1.2.4.2.1.3.1
Annulez le facteur commun.
Étape 1.2.4.2.1.3.2
Réécrivez l’expression.
Étape 1.2.4.2.1.4
Multipliez par .
Étape 1.2.4.2.2
Soustrayez de .
Étape 1.2.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 1.3
Remplacez par dans l’équation .
Étape 1.4
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 1.5
Additionnez et .
Étape 1.6
Divisez chaque terme par pour rendre le côté droit égal à un.
Étape 1.7
Simplifiez chaque terme de l’équation afin de définir le côté droit égal à . La forme normalisée d’une ellipse ou hyperbole nécessite que le côté droit de l’équation soit .
Étape 2
C’est la forme d’une hyperbole. Utilisez cette forme pour déterminer les valeurs utilisées pour déterminer les sommets et les asymptotes de l’hyperbole.
Étape 3
Faites correspondre les valeurs dans cette hyperbole avec celles de la forme normalisée. La variable représente le décalage x par rapport à l’origine, représente le décalage y par rapport à l’origine, .
Étape 4
Le centre d’une hyperbole suit la forme de . Remplacez les valeurs de et .
Étape 5
Étape 5.1
Déterminez la distance du centre à un foyer de l’hyperbole en utilisant la formule suivante.
Étape 5.2
Remplacez les valeurs de et dans la formule.
Étape 5.3
Simplifiez
Étape 5.3.1
Élevez à la puissance .
Étape 5.3.2
Élevez à la puissance .
Étape 5.3.3
Additionnez et .
Étape 5.3.4
Réécrivez comme .
Étape 5.3.4.1
Factorisez à partir de .
Étape 5.3.4.2
Réécrivez comme .
Étape 5.3.5
Extrayez les termes de sous le radical.
Étape 6
Étape 6.1
Le premier sommet d’une hyperbole peut être déterminé en ajoutant à .
Étape 6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 6.3
Le deuxième sommet d’une hyperbole peut être déterminé en soustrayant à .
Étape 6.4
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 6.5
Les sommets d’une hyperbole suivent la forme de . Les hyperboles ont deux sommets.
Étape 7
Étape 7.1
Le premier foyer d’une hyperbole peut être déterminé en ajoutant à .
Étape 7.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7.3
Le deuxième foyer d’une hyperbole peut être déterminé en soustrayant à .
Étape 7.4
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7.5
Les foyers d’une hyperbole suivent la forme de . Les hyperboles ont deux foyers.
Étape 8
Étape 8.1
Déterminez l’excentricité en utilisant la formule suivante.
Étape 8.2
Remplacez les valeurs de et dans la formule.
Étape 8.3
Simplifiez
Étape 8.3.1
Simplifiez le numérateur.
Étape 8.3.1.1
Élevez à la puissance .
Étape 8.3.1.2
Élevez à la puissance .
Étape 8.3.1.3
Additionnez et .
Étape 8.3.1.4
Réécrivez comme .
Étape 8.3.1.4.1
Factorisez à partir de .
Étape 8.3.1.4.2
Réécrivez comme .
Étape 8.3.1.5
Extrayez les termes de sous le radical.
Étape 8.3.2
Annulez le facteur commun de .
Étape 8.3.2.1
Annulez le facteur commun.
Étape 8.3.2.2
Divisez par .
Étape 9
Étape 9.1
Déterminez la distance du paramètre focal l’hyperbole en utilisant la formule suivante.
Étape 9.2
Remplacez les valeurs de et dans la formule.
Étape 9.3
Simplifiez
Étape 9.3.1
Annulez le facteur commun à et .
Étape 9.3.1.1
Factorisez à partir de .
Étape 9.3.1.2
Annulez les facteurs communs.
Étape 9.3.1.2.1
Factorisez à partir de .
Étape 9.3.1.2.2
Annulez le facteur commun.
Étape 9.3.1.2.3
Réécrivez l’expression.
Étape 9.3.2
Multipliez par .
Étape 9.3.3
Associez et simplifiez le dénominateur.
Étape 9.3.3.1
Multipliez par .
Étape 9.3.3.2
Élevez à la puissance .
Étape 9.3.3.3
Élevez à la puissance .
Étape 9.3.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 9.3.3.5
Additionnez et .
Étape 9.3.3.6
Réécrivez comme .
Étape 9.3.3.6.1
Utilisez pour réécrire comme .
Étape 9.3.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 9.3.3.6.3
Associez et .
Étape 9.3.3.6.4
Annulez le facteur commun de .
Étape 9.3.3.6.4.1
Annulez le facteur commun.
Étape 9.3.3.6.4.2
Réécrivez l’expression.
Étape 9.3.3.6.5
Évaluez l’exposant.
Étape 10
Les asymptotes suivent la forme car cette hyperbole ouvre vers la gauche et vers la droite.
Étape 11
Étape 11.1
Supprimez les parenthèses.
Étape 11.2
Simplifiez .
Étape 11.2.1
Additionnez et .
Étape 11.2.2
Multipliez par .
Étape 11.2.3
Multipliez par .
Étape 12
Étape 12.1
Supprimez les parenthèses.
Étape 12.2
Simplifiez .
Étape 12.2.1
Simplifiez l’expression.
Étape 12.2.1.1
Additionnez et .
Étape 12.2.1.2
Multipliez par .
Étape 12.2.2
Appliquez la propriété distributive.
Étape 12.2.3
Simplifiez l’expression.
Étape 12.2.3.1
Réécrivez comme .
Étape 12.2.3.2
Multipliez par .
Étape 13
Cette hyperbole a deux asymptotes.
Étape 14
Ces valeurs représentent les valeurs importantes pour représenter graphiquement et analyser une hyperbole.
Centre :
Sommets :
Foyers :
Excentricité :
Paramètre focal :
Asymptotes : ,
Étape 15