Pré-calcul Exemples

Trouver le déterminant [[-1,cos(c),cos(b)],[cos(c),-1,cos(a)],[cos(b),cos(a),-1]]
Étape 1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Consider the corresponding sign chart.
Étape 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 1.3
The minor for is the determinant with row and column deleted.
Étape 1.4
Multiply element by its cofactor.
Étape 1.5
The minor for is the determinant with row and column deleted.
Étape 1.6
Multiply element by its cofactor.
Étape 1.7
The minor for is the determinant with row and column deleted.
Étape 1.8
Multiply element by its cofactor.
Étape 1.9
Add the terms together.
Étape 2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 2.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Multipliez par .
Étape 2.2.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Élevez à la puissance .
Étape 2.2.1.2.2
Élevez à la puissance .
Étape 2.2.1.2.3
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.1.2.4
Additionnez et .
Étape 2.2.2
Appliquez l’identité pythagoricienne.
Étape 3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Déplacez à gauche de .
Étape 3.2.2
Réécrivez comme .
Étape 4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 4.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Multipliez par .
Étape 4.2.2
Multipliez par .
Étape 5
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Réécrivez comme .
Étape 5.1.2
Appliquez la propriété distributive.
Étape 5.1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Multipliez par .
Étape 5.1.3.2
Multipliez par .
Étape 5.1.3.3
Élevez à la puissance .
Étape 5.1.3.4
Élevez à la puissance .
Étape 5.1.3.5
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.3.6
Additionnez et .
Étape 5.1.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.1
Multipliez par .
Étape 5.1.4.2
Multipliez par .
Étape 5.1.5
Appliquez la propriété distributive.
Étape 5.1.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.6.1
Élevez à la puissance .
Étape 5.1.6.2
Élevez à la puissance .
Étape 5.1.6.3
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.6.4
Additionnez et .
Étape 5.2
Réorganisez les facteurs dans les termes et .
Étape 5.3
Additionnez et .