Entrer un problème...
Pré-calcul Exemples
Étape 1
Utilisez la forme afin de déterminer les variables pour déterminer l’amplitude, la période, le déphasage et le décalage vertical.
Étape 2
Comme le graphe de la fonction n’a pas de valeur maximale ni minimale, il ne peut y avoir aucune valeur pour l’amplitude.
Amplitude : Aucune
Étape 3
Étape 3.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2
Remplacez par dans la formule pour la période.
Étape 3.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 3.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.5
Annulez le facteur commun de .
Étape 3.5.1
Factorisez à partir de .
Étape 3.5.2
Annulez le facteur commun.
Étape 3.5.3
Réécrivez l’expression.
Étape 3.6
Multipliez par .
Étape 4
Étape 4.1
Le déphasage de la fonction peut être calculé à partir de .
Déphasage :
Étape 4.2
Remplacez les valeurs de et dans l’équation pour le déphasage.
Déphasage :
Étape 4.3
Multipliez le numérateur par la réciproque du dénominateur.
Déphasage :
Étape 4.4
Annulez le facteur commun de .
Étape 4.4.1
Placez le signe négatif initial dans dans le numérateur.
Déphasage :
Étape 4.4.2
Factorisez à partir de .
Déphasage :
Étape 4.4.3
Annulez le facteur commun.
Déphasage :
Étape 4.4.4
Réécrivez l’expression.
Déphasage :
Déphasage :
Étape 4.5
Annulez le facteur commun de .
Étape 4.5.1
Factorisez à partir de .
Déphasage :
Étape 4.5.2
Annulez le facteur commun.
Déphasage :
Étape 4.5.3
Réécrivez l’expression.
Déphasage :
Déphasage :
Étape 4.6
Placez le signe moins devant la fraction.
Déphasage :
Déphasage :
Étape 5
Indiquez les propriétés de la fonction trigonométrique.
Amplitude : Aucune
Période :
Déphasage : ( à gauche)
Décalage vertical : Aucune
Étape 6