Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Supprimez les parenthèses.
Étape 1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
Appliquez la propriété distributive.
Étape 2.2.1.2
Multipliez par .
Étape 2.2.1.3
Déplacez à gauche de .
Étape 2.2.1.4
Réécrivez comme .
Étape 2.2.1.5
Annulez le facteur commun de .
Étape 2.2.1.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.2.1.5.2
Annulez le facteur commun.
Étape 2.2.1.5.3
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Multipliez par .
Étape 3
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Additionnez et .
Étape 3.4
Factorisez à l’aide de la méthode AC.
Étape 3.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.6
Définissez égal à et résolvez .
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
Définissez égal à et résolvez .
Étape 3.7.1
Définissez égal à .
Étape 3.7.2
Soustrayez des deux côtés de l’équation.
Étape 3.8
La solution finale est l’ensemble des valeurs qui rendent vraie.