Pré-calcul Exemples

Resolva para y 1+(3y)/(1-y)>2
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Écrivez comme une fraction avec le dénominateur .
Étape 2.1.2
Multipliez par .
Étape 2.1.3
Multipliez par .
Étape 2.1.4
Écrivez comme une fraction avec le dénominateur .
Étape 2.1.5
Multipliez par .
Étape 2.1.6
Multipliez par .
Étape 2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Multipliez par .
Étape 2.4
Soustrayez de .
Étape 2.5
Additionnez et .
Étape 2.6
Additionnez et .
Étape 2.7
Factorisez à partir de .
Étape 2.8
Réécrivez comme .
Étape 2.9
Factorisez à partir de .
Étape 2.10
Réécrivez comme .
Étape 2.11
Placez le signe moins devant la fraction.
Étape 3
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 6
Ajoutez aux deux côtés de l’équation.
Étape 7
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 8
Consolidez les solutions.
Étape 9
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 9.2
Ajoutez aux deux côtés de l’équation.
Étape 9.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 10
Utilisez chaque racine pour créer des intervalles de test.
Étape 11
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.1.2
Remplacez par dans l’inégalité d’origine.
Étape 11.1.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 11.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.2.2
Remplacez par dans l’inégalité d’origine.
Étape 11.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 11.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.3.2
Remplacez par dans l’inégalité d’origine.
Étape 11.3.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 11.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 12
La solution se compose de tous les intervalles vrais.
Étape 13
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 14