Pré-calcul Exemples

Resolva para x |x-6|+3x<12
Étape 1
Écrivez comme fonction définie par morceaux.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour déterminer l’intervalle pour la première partie, déterminez où l’intérieur de la valeur absolue est non négatif.
Étape 1.2
Ajoutez aux deux côtés de l’inégalité.
Étape 1.3
Dans la partie où est non négatif, retirez la valeur absolue.
Étape 1.4
Pour déterminer l’intervalle pour la deuxième partie, déterminez où l’intérieur de la valeur absolue est négatif.
Étape 1.5
Ajoutez aux deux côtés de l’inégalité.
Étape 1.6
Dans la partie où est négatif, retirez la valeur absolue et multipliez par .
Étape 1.7
Écrivez comme fonction définie par morceaux.
Étape 1.8
Additionnez et .
Étape 1.9
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.9.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.9.1.1
Appliquez la propriété distributive.
Étape 1.9.1.2
Multipliez par .
Étape 1.9.2
Additionnez et .
Étape 2
Résolvez quand .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Ajoutez aux deux côtés de l’inégalité.
Étape 2.1.1.2
Additionnez et .
Étape 2.1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Divisez chaque terme dans par .
Étape 2.1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1.1
Annulez le facteur commun.
Étape 2.1.2.2.1.2
Divisez par .
Étape 2.1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.1.1
Factorisez à partir de .
Étape 2.1.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.1.2.1
Factorisez à partir de .
Étape 2.1.2.3.1.2.2
Annulez le facteur commun.
Étape 2.1.2.3.1.2.3
Réécrivez l’expression.
Étape 2.2
Déterminez l’intersection de et .
Aucune solution
Aucune solution
Étape 3
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Soustrayez des deux côtés de l’inégalité.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Divisez par .
Étape 4
Déterminez l’union des solutions.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 6