Pré-calcul Exemples

Resolva para x 3^(x^3)=81^x
Étape 1
Créez des expressions équivalentes dans l’équation qui ont toutes des bases égales.
Étape 2
Les bases étant les mêmes, deux expressions ne sont égales que si les exposants sont également égaux.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3.2.3.2
Supprimez les parenthèses inutiles.
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à .
Étape 3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Soustrayez des deux côtés de l’équation.
Étape 3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.