Pré-calcul Exemples

Simplifier 8-(x^3)/(x^2-4x+4)
Étape 1
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez comme .
Étape 1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 1.3
Réécrivez le polynôme.
Étape 1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3
Associez les numérateurs sur le dénominateur commun.
Étape 4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Appliquez la propriété distributive.
Étape 4.2.2
Appliquez la propriété distributive.
Étape 4.2.3
Appliquez la propriété distributive.
Étape 4.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Multipliez par .
Étape 4.3.1.2
Déplacez à gauche de .
Étape 4.3.1.3
Multipliez par .
Étape 4.3.2
Soustrayez de .
Étape 4.4
Appliquez la propriété distributive.
Étape 4.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Multipliez par .
Étape 4.5.2
Multipliez par .
Étape 4.6
Remettez les termes dans l’ordre.
Étape 5
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Factorisez à partir de .
Étape 5.2
Factorisez à partir de .
Étape 5.3
Factorisez à partir de .
Étape 5.4
Factorisez à partir de .
Étape 5.5
Factorisez à partir de .
Étape 5.6
Réécrivez comme .
Étape 5.7
Factorisez à partir de .
Étape 5.8
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 5.8.1
Réécrivez comme .
Étape 5.8.2
Placez le signe moins devant la fraction.