Pré-calcul Exemples

Resolva para x 5^x+125(5^(-x))-30=0
Étape 1
Réécrivez comme une élévation à une puissance.
Étape 2
Remplacez par .
Étape 3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.2
Associez et .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 4.1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 4.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Multipliez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Multipliez par .
Étape 4.2.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.2.1
Annulez le facteur commun.
Étape 4.2.2.1.2.2
Réécrivez l’expression.
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Multipliez par .
Étape 4.3
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.3.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.3.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Définissez égal à .
Étape 4.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Définissez égal à .
Étape 4.3.4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Remplacez par dans .
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Créez des expressions équivalentes dans l’équation qui ont toutes des bases égales.
Étape 6.3
Les bases étant les mêmes, deux expressions ne sont égales que si les exposants sont également égaux.
Étape 7
Remplacez par dans .
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Réécrivez l’équation comme .
Étape 8.2
Créez des expressions équivalentes dans l’équation qui ont toutes des bases égales.
Étape 8.3
Les bases étant les mêmes, deux expressions ne sont égales que si les exposants sont également égaux.
Étape 9
Indiquez les solutions qui rendent l’équation vraie.