Pré-calcul Exemples

Resolva para x e^(2x)-3e^x=4
Étape 1
Réécrivez comme une élévation à une puissance.
Étape 2
Remplacez par .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Définissez égal à .
Étape 3.4.2
Ajoutez aux deux côtés de l’équation.
Étape 3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Soustrayez des deux côtés de l’équation.
Étape 3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Remplacez par dans .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Réécrivez l’équation comme .
Étape 5.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 5.3
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Développez en déplaçant hors du logarithme.
Étape 5.3.2
Le logarithme naturel de est .
Étape 5.3.3
Multipliez par .
Étape 6
Remplacez par dans .
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Réécrivez l’équation comme .
Étape 7.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 7.3
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 7.4
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Étape 8
Indiquez les solutions qui rendent l’équation vraie.
Étape 9
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :