Entrer un problème...
Pré-calcul Exemples
Étape 1
Réécrivez comme une élévation à une puissance.
Étape 2
Remplacez par .
Étape 3
Étape 3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.2
Associez et .
Étape 3.3
Placez le signe moins devant la fraction.
Étape 4
Étape 4.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 4.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 4.1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 4.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 4.2.1
Multipliez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Multipliez par .
Étape 4.2.2.1.2
Annulez le facteur commun de .
Étape 4.2.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.2.2.1.2.2
Annulez le facteur commun.
Étape 4.2.2.1.2.3
Réécrivez l’expression.
Étape 4.2.3
Simplifiez le côté droit.
Étape 4.2.3.1
Multipliez par .
Étape 4.3
Résolvez l’équation.
Étape 4.3.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2
Factorisez à l’aide de la méthode AC.
Étape 4.3.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.3.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3.4
Définissez égal à et résolvez .
Étape 4.3.4.1
Définissez égal à .
Étape 4.3.4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3.5
Définissez égal à et résolvez .
Étape 4.3.5.1
Définissez égal à .
Étape 4.3.5.2
Soustrayez des deux côtés de l’équation.
Étape 4.3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Remplacez par dans .
Étape 6
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 6.3
Développez le côté gauche.
Étape 6.3.1
Développez en déplaçant hors du logarithme.
Étape 6.3.2
Le logarithme naturel de est .
Étape 6.3.3
Multipliez par .
Étape 7
Remplacez par dans .
Étape 8
Étape 8.1
Réécrivez l’équation comme .
Étape 8.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 8.3
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 8.4
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Étape 9
Indiquez les solutions qui rendent l’équation vraie.
Étape 10
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :