Pré-calcul Exemples

Resolva para x e^x+2e^(-x)=3
Étape 1
Réécrivez comme une élévation à une puissance.
Étape 2
Remplacez par .
Étape 3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.2
Associez et .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 4.1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 4.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Multipliez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Multipliez par .
Étape 4.2.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.2.1
Annulez le facteur commun.
Étape 4.2.2.1.2.2
Réécrivez l’expression.
Étape 4.3
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.3.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Définissez égal à .
Étape 4.3.4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Définissez égal à .
Étape 4.3.5.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Remplacez par dans .
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 6.3
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Développez en déplaçant hors du logarithme.
Étape 6.3.2
Le logarithme naturel de est .
Étape 6.3.3
Multipliez par .
Étape 7
Remplacez par dans .
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Réécrivez l’équation comme .
Étape 8.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 8.3
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Développez en déplaçant hors du logarithme.
Étape 8.3.2
Le logarithme naturel de est .
Étape 8.3.3
Multipliez par .
Étape 8.4
Le logarithme naturel de est .
Étape 9
Indiquez les solutions qui rendent l’équation vraie.
Étape 10
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :