Entrer un problème...
Pré-calcul Exemples
Étape 1
Simplifiez en déplaçant dans le logarithme.
Étape 2
Pour que l’équation soit égale, l’argument des logarithmes des deux côtés de l’équation doit être égal.
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Factorisez le côté gauche de l’équation.
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.1.1
Multipliez par .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, où et .
Étape 3.2.4
Factorisez.
Étape 3.2.4.1
Simplifiez
Étape 3.2.4.1.1
Un à n’importe quelle puissance est égal à un.
Étape 3.2.4.1.2
Multipliez par .
Étape 3.2.4.2
Supprimez les parenthèses inutiles.
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à et résolvez .
Étape 3.4.1
Définissez égal à .
Étape 3.4.2
Résolvez pour .
Étape 3.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4.2.2
Simplifiez .
Étape 3.4.2.2.1
Réécrivez comme .
Étape 3.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Résolvez pour .
Étape 3.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.5.2.2.1
Divisez chaque terme dans par .
Étape 3.5.2.2.2
Simplifiez le côté gauche.
Étape 3.5.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.5.2.2.2.2
Divisez par .
Étape 3.5.2.2.3
Simplifiez le côté droit.
Étape 3.5.2.2.3.1
Divisez par .
Étape 3.6
Définissez égal à et résolvez .
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Résolvez pour .
Étape 3.6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.6.2.3
Simplifiez
Étape 3.6.2.3.1
Simplifiez le numérateur.
Étape 3.6.2.3.1.1
Un à n’importe quelle puissance est égal à un.
Étape 3.6.2.3.1.2
Multipliez .
Étape 3.6.2.3.1.2.1
Multipliez par .
Étape 3.6.2.3.1.2.2
Multipliez par .
Étape 3.6.2.3.1.3
Soustrayez de .
Étape 3.6.2.3.1.4
Réécrivez comme .
Étape 3.6.2.3.1.5
Réécrivez comme .
Étape 3.6.2.3.1.6
Réécrivez comme .
Étape 3.6.2.3.2
Multipliez par .
Étape 3.6.2.4
La réponse finale est la combinaison des deux solutions.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.