Entrer un problème...
Pré-calcul Exemples
Étape 1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 2
Étape 2.1
Utilisez pour réécrire comme .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez .
Étape 2.2.1.1
Multipliez les exposants dans .
Étape 2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.1.2
Annulez le facteur commun de .
Étape 2.2.1.1.2.1
Annulez le facteur commun.
Étape 2.2.1.1.2.2
Réécrivez l’expression.
Étape 2.2.1.2
Simplifiez
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Réécrivez comme .
Étape 2.3.1.1
Utilisez pour réécrire comme .
Étape 2.3.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.1.3
Associez et .
Étape 2.3.1.4
Annulez le facteur commun de .
Étape 2.3.1.4.1
Annulez le facteur commun.
Étape 2.3.1.4.2
Réécrivez l’expression.
Étape 2.3.1.5
Simplifiez
Étape 3
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Factorisez par regroupement.
Étape 3.3.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 3.3.1.1
Factorisez à partir de .
Étape 3.3.1.2
Réécrivez comme plus
Étape 3.3.1.3
Appliquez la propriété distributive.
Étape 3.3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.3.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.3.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.3.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Résolvez pour .
Étape 3.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.5.2.2.1
Divisez chaque terme dans par .
Étape 3.5.2.2.2
Simplifiez le côté gauche.
Étape 3.5.2.2.2.1
Annulez le facteur commun de .
Étape 3.5.2.2.2.1.1
Annulez le facteur commun.
Étape 3.5.2.2.2.1.2
Divisez par .
Étape 3.6
Définissez égal à et résolvez .
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Soustrayez des deux côtés de l’équation.
Étape 3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :