Pré-calcul Exemples

Resolva para ? sin(x)-2cos(x)^2=0
Étape 1
Remplacez le par d’après l’identité .
Étape 2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Appliquez la propriété distributive.
Étape 2.2
Multipliez par .
Étape 2.3
Multipliez par .
Étape 3
Remettez le polynôme dans l’ordre.
Étape 4
Remplacez par .
Étape 5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Un à n’importe quelle puissance est égal à un.
Étape 7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1
Multipliez par .
Étape 7.1.2.2
Multipliez par .
Étape 7.1.3
Additionnez et .
Étape 7.2
Multipliez par .
Étape 8
La réponse finale est la combinaison des deux solutions.
Étape 9
Remplacez par .
Étape 10
Définissez chacune des solutions à résoudre pour .
Étape 11
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 11.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Évaluez .
Étape 11.3
La fonction sinus est négative dans les troisième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez la solution de pour déterminer un angle de référence. Ajoutez ensuite cet angle de référence à pour déterminer la solution dans le troisième quadrant.
Étape 11.4
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 11.4.1
Soustrayez de .
Étape 11.4.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 11.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 11.5.1
La période de la fonction peut être calculée en utilisant .
Étape 11.5.2
Remplacez par dans la formule pour la période.
Étape 11.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.5.4
Divisez par .
Étape 11.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 12
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
La plage du sinus est . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Aucune solution
Étape 13
Indiquez toutes les solutions.
, pour tout entier