Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Factorisez en utilisant la règle du carré parfait.
Étape 1.1.1
Réécrivez comme .
Étape 1.1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 1.1.3
Réécrivez le polynôme.
Étape 1.1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 1.2
Factorisez à partir de .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Les étapes pour déterminer le plus petit multiple commun pour sont :
1. Déterminez le plus petit multiple commun pour la partie numérique .
2. Déterminez le plus petit multiple commun pour la partie variable .
3. Déterminez le plus petit multiple commun pour la partie variable composée .
4. Multipliez tous les plus petits multiples communs entre eux.
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.8
Les facteurs pour sont , qui correspond à multiplié par lui-même fois.
se produit fois.
Étape 2.9
Le facteur pour est lui-même.
se produit fois.
Étape 2.10
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.11
Le plus petit multiple commun de certains nombres est le plus petit nombre dont les nombres sont des facteurs.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Annulez le facteur commun de .
Étape 3.2.1.1.1
Factorisez à partir de .
Étape 3.2.1.1.2
Annulez le facteur commun.
Étape 3.2.1.1.3
Réécrivez l’expression.
Étape 3.2.1.2
Appliquez la propriété distributive.
Étape 3.2.1.3
Multipliez par en additionnant les exposants.
Étape 3.2.1.3.1
Déplacez .
Étape 3.2.1.3.2
Multipliez par .
Étape 3.2.1.4
Réécrivez comme .
Étape 3.2.1.5
Annulez le facteur commun de .
Étape 3.2.1.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.5.2
Factorisez à partir de .
Étape 3.2.1.5.3
Annulez le facteur commun.
Étape 3.2.1.5.4
Réécrivez l’expression.
Étape 3.2.1.6
Appliquez la propriété distributive.
Étape 3.2.1.7
Multipliez par .
Étape 3.2.2
Soustrayez de .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Annulez le facteur commun de .
Étape 3.3.1.1
Factorisez à partir de .
Étape 3.3.1.2
Annulez le facteur commun.
Étape 3.3.1.3
Réécrivez l’expression.
Étape 4
Étape 4.1
Simplifiez .
Étape 4.1.1
Réécrivez.
Étape 4.1.2
Réécrivez comme .
Étape 4.1.3
Développez à l’aide de la méthode FOIL.
Étape 4.1.3.1
Appliquez la propriété distributive.
Étape 4.1.3.2
Appliquez la propriété distributive.
Étape 4.1.3.3
Appliquez la propriété distributive.
Étape 4.1.4
Simplifiez et associez les termes similaires.
Étape 4.1.4.1
Simplifiez chaque terme.
Étape 4.1.4.1.1
Multipliez par .
Étape 4.1.4.1.2
Déplacez à gauche de .
Étape 4.1.4.1.3
Multipliez par .
Étape 4.1.4.2
Additionnez et .
Étape 4.1.5
Appliquez la propriété distributive.
Étape 4.1.6
Simplifiez
Étape 4.1.6.1
Multipliez par .
Étape 4.1.6.2
Multipliez par .
Étape 4.2
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.2.3
Associez les termes opposés dans .
Étape 4.2.3.1
Soustrayez de .
Étape 4.2.3.2
Additionnez et .
Étape 4.2.4
Soustrayez de .
Étape 4.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 4.3.1
Ajoutez aux deux côtés de l’équation.
Étape 4.3.2
Additionnez et .
Étape 4.4
Divisez chaque terme dans par et simplifiez.
Étape 4.4.1
Divisez chaque terme dans par .
Étape 4.4.2
Simplifiez le côté gauche.
Étape 4.4.2.1
Annulez le facteur commun de .
Étape 4.4.2.1.1
Annulez le facteur commun.
Étape 4.4.2.1.2
Divisez par .
Étape 4.4.3
Simplifiez le côté droit.
Étape 4.4.3.1
Annulez le facteur commun à et .
Étape 4.4.3.1.1
Factorisez à partir de .
Étape 4.4.3.1.2
Annulez les facteurs communs.
Étape 4.4.3.1.2.1
Factorisez à partir de .
Étape 4.4.3.1.2.2
Annulez le facteur commun.
Étape 4.4.3.1.2.3
Réécrivez l’expression.
Étape 4.4.3.2
Placez le signe moins devant la fraction.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :