Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.2
Associez et .
Étape 1.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.4
Associez et .
Étape 1.5
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.6
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 2.7
Le facteur pour est lui-même.
se produit fois.
Étape 2.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.9
Multipliez par .
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Annulez le facteur commun de .
Étape 3.2.1.1.1
Annulez le facteur commun.
Étape 3.2.1.1.2
Réécrivez l’expression.
Étape 3.2.1.2
Annulez le facteur commun de .
Étape 3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.2.2
Factorisez à partir de .
Étape 3.2.1.2.3
Annulez le facteur commun.
Étape 3.2.1.2.4
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Multipliez par .
Étape 4
Étape 4.1
Factorisez à partir de .
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Factorisez à partir de .
Étape 4.1.3
Factorisez à partir de .
Étape 4.1.4
Factorisez à partir de .
Étape 4.1.5
Factorisez à partir de .
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Étape 4.2.2.1
Annulez le facteur commun de .
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Étape 4.2.3.1
Divisez par .
Étape 4.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4.5
Simplifiez
Étape 4.5.1
Simplifiez le numérateur.
Étape 4.5.1.1
Élevez à la puissance .
Étape 4.5.1.2
Multipliez .
Étape 4.5.1.2.1
Multipliez par .
Étape 4.5.1.2.2
Multipliez par .
Étape 4.5.1.3
Soustrayez de .
Étape 4.5.1.4
Réécrivez comme .
Étape 4.5.1.5
Réécrivez comme .
Étape 4.5.1.6
Réécrivez comme .
Étape 4.5.1.7
Réécrivez comme .
Étape 4.5.1.7.1
Factorisez à partir de .
Étape 4.5.1.7.2
Réécrivez comme .
Étape 4.5.1.8
Extrayez les termes de sous le radical.
Étape 4.5.1.9
Déplacez à gauche de .
Étape 4.5.2
Multipliez par .
Étape 4.6
La réponse finale est la combinaison des deux solutions.