Entrer un problème...
Pré-calcul Exemples
Étape 1
Réécrivez l’équation comme .
Étape 2
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3
Étape 3.1
Simplifiez le côté gauche.
Étape 3.1.1
Simplifiez .
Étape 3.1.1.1
Multipliez les exposants dans .
Étape 3.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.1.1.1.2
Annulez le facteur commun de .
Étape 3.1.1.1.2.1
Annulez le facteur commun.
Étape 3.1.1.1.2.2
Réécrivez l’expression.
Étape 3.1.1.1.3
Annulez le facteur commun de .
Étape 3.1.1.1.3.1
Annulez le facteur commun.
Étape 3.1.1.1.3.2
Réécrivez l’expression.
Étape 3.1.1.2
Simplifiez
Étape 3.2
Simplifiez le côté droit.
Étape 3.2.1
Appliquez la règle de produit à .
Étape 4
Étape 4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.2
Soustrayez des deux côtés de l’équation.
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Étape 4.3.2.1
Annulez le facteur commun de .
Étape 4.3.2.1.1
Annulez le facteur commun.
Étape 4.3.2.1.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Étape 4.3.3.1
Simplifiez chaque terme.
Étape 4.3.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.3.3.1.2
Associez.
Étape 4.3.3.1.3
Multipliez par .
Étape 4.3.3.1.4
Déplacez à gauche de .
Étape 4.3.3.1.5
Placez le signe moins devant la fraction.
Étape 4.4
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5
Soustrayez des deux côtés de l’équation.
Étape 4.6
Divisez chaque terme dans par et simplifiez.
Étape 4.6.1
Divisez chaque terme dans par .
Étape 4.6.2
Simplifiez le côté gauche.
Étape 4.6.2.1
Annulez le facteur commun de .
Étape 4.6.2.1.1
Annulez le facteur commun.
Étape 4.6.2.1.2
Divisez par .
Étape 4.6.3
Simplifiez le côté droit.
Étape 4.6.3.1
Simplifiez chaque terme.
Étape 4.6.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.6.3.1.2
Multipliez par .
Étape 4.6.3.1.3
Placez le signe moins devant la fraction.
Étape 4.7
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :