Entrer un problème...
Pré-calcul Exemples
Étape 1
Pour que l’équation soit égale, l’argument des logarithmes des deux côtés de l’équation doit être égal.
Étape 2
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Factorisez le côté gauche de l’équation.
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Laissez . Remplacez toutes les occurrences de par .
Étape 2.2.3
Factorisez à partir de .
Étape 2.2.3.1
Factorisez à partir de .
Étape 2.2.3.2
Factorisez à partir de .
Étape 2.2.3.3
Factorisez à partir de .
Étape 2.2.4
Remplacez toutes les occurrences de par .
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.4.2.2
Simplifiez .
Étape 2.4.2.2.1
Réécrivez comme .
Étape 2.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.4.2.2.3
Plus ou moins est .
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Étape 2.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.5.2.3
Toute racine de est .
Étape 2.5.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.5.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.5.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Excluez les solutions qui ne rendent pas vrai.