Pré-calcul Exemples

Resolva para x tan(3x)(tan(x-1))=0
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez égal à .
Étape 2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 2.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
La valeur exacte de est .
Étape 2.2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Divisez chaque terme dans par .
Étape 2.2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1.1
Annulez le facteur commun.
Étape 2.2.3.2.1.2
Divisez par .
Étape 2.2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.3.1
Divisez par .
Étape 2.2.4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 2.2.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Additionnez et .
Étape 2.2.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.1
Divisez chaque terme dans par .
Étape 2.2.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.2.1.1
Annulez le facteur commun.
Étape 2.2.5.2.2.1.2
Divisez par .
Étape 2.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 2.2.6.2
Remplacez par dans la formule pour la période.
Étape 2.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
La valeur exacte de est .
Étape 3.2.3
Ajoutez aux deux côtés de l’équation.
Étape 3.2.4
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 3.2.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.1
Additionnez et .
Étape 3.2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 3.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2.6.2
Remplacez par dans la formule pour la période.
Étape 3.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.6.4
Divisez par .
Étape 3.2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 4
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 5
Consolidez les réponses.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Consolidez et en .
, pour tout entier
Étape 5.2
Consolidez et en .
, pour tout entier
, pour tout entier