Entrer un problème...
Pré-calcul Exemples
Étape 1
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction sécante, , pour égal à afin de déterminer où l’asymptote verticale se situe pour .
Étape 2
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Associez et .
Étape 2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.5
Simplifiez le numérateur.
Étape 2.5.1
Déplacez à gauche de .
Étape 2.5.2
Additionnez et .
Étape 3
Définissez l’intérieur de la fonction sécante égal à .
Étape 4
Étape 4.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3
Associez et .
Étape 4.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5
Simplifiez le numérateur.
Étape 4.5.1
Déplacez à gauche de .
Étape 4.5.2
Additionnez et .
Étape 5
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 6
Étape 6.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.2
Divisez par .
Étape 7
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier. C’est la moitié de la période.
Étape 8
La sécante n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : où est un entier
Étape 9