Pré-calcul Exemples

Trouver les asymptotes y=cot(x+pi/6)
Étape 1
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction cotangente, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 2
Soustrayez des deux côtés de l’équation.
Étape 3
Définissez l’intérieur de la fonction cotangente égal à .
Étape 4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3
Associez et .
Étape 4.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Déplacez à gauche de .
Étape 4.5.2
Soustrayez de .
Étape 5
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 6
Déterminez la période pour déterminer où les asymptotes verticales existent.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.2
Divisez par .
Étape 7
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier.
Étape 8
La cotangente n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : est un entier
Étape 9