Pré-calcul Exemples

Trouver les asymptotes y=cot(x/2)
Étape 1
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction cotangente, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 2
Définissez le numérateur égal à zéro.
Étape 3
Définissez l’intérieur de la fonction cotangente égal à .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez les deux côtés de l’équation par .
Étape 4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Réécrivez l’expression.
Étape 5
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 6
Déterminez la période pour déterminer où les asymptotes verticales existent.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
est d’environ qui est positif, alors retirez la valeur absolue
Étape 6.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.3
Déplacez à gauche de .
Étape 7
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier.
Étape 8
La cotangente n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : est un entier
Étape 9