Entrer un problème...
Pré-calcul Exemples
Étape 1
Utilisez la définition du sinus pour déterminer les côtés connus du triangle rectangle du cercle unité. Le quadrant détermine le signe sur chacune des valeurs.
Étape 2
Déterminez le côté adjacent du triangle du cercle unité. L’hypoténuse et le côté opposé étant connus, utilisez le théorème de Pythagore pour déterminer le côté restant.
Étape 3
Remplacez les valeurs connues dans l’équation.
Étape 4
Étape 4.1
Inversez .
Adjacent
Étape 4.2
Élevez à la puissance .
Adjacent
Étape 4.3
Élevez à la puissance .
Adjacent
Étape 4.4
Multipliez par .
Adjacent
Étape 4.5
Soustrayez de .
Adjacent
Étape 4.6
Réécrivez comme .
Adjacent
Étape 4.7
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Adjacent
Étape 4.8
Multipliez par .
Adjacent
Adjacent
Étape 5
Étape 5.1
Factorisez à partir de .
Étape 5.2
Annulez les facteurs communs.
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.2
Annulez le facteur commun.
Étape 5.2.3
Réécrivez l’expression.
Étape 6
Étape 6.1
Utilisez la définition du cosinus pour déterminer la valeur de .
Étape 6.2
Remplacez dans les valeurs connues.
Étape 6.3
Simplifiez la valeur de .
Étape 6.3.1
Annulez le facteur commun à et .
Étape 6.3.1.1
Factorisez à partir de .
Étape 6.3.1.2
Annulez les facteurs communs.
Étape 6.3.1.2.1
Factorisez à partir de .
Étape 6.3.1.2.2
Annulez le facteur commun.
Étape 6.3.1.2.3
Réécrivez l’expression.
Étape 6.3.2
Placez le signe moins devant la fraction.
Étape 7
Étape 7.1
Utilisez la définition de la tangente pour déterminer la valeur de .
Étape 7.2
Remplacez dans les valeurs connues.
Étape 7.3
Simplifiez la valeur de .
Étape 7.3.1
Annulez le facteur commun à et .
Étape 7.3.1.1
Factorisez à partir de .
Étape 7.3.1.2
Annulez les facteurs communs.
Étape 7.3.1.2.1
Factorisez à partir de .
Étape 7.3.1.2.2
Annulez le facteur commun.
Étape 7.3.1.2.3
Réécrivez l’expression.
Étape 7.3.2
Placez le signe moins devant la fraction.
Étape 8
Étape 8.1
Utilisez la définition de la cotangente pour déterminer la valeur de .
Étape 8.2
Remplacez dans les valeurs connues.
Étape 8.3
Simplifiez la valeur de .
Étape 8.3.1
Annulez le facteur commun à et .
Étape 8.3.1.1
Factorisez à partir de .
Étape 8.3.1.2
Annulez les facteurs communs.
Étape 8.3.1.2.1
Factorisez à partir de .
Étape 8.3.1.2.2
Annulez le facteur commun.
Étape 8.3.1.2.3
Réécrivez l’expression.
Étape 8.3.2
Placez le signe moins devant la fraction.
Étape 9
Étape 9.1
Utilisez la définition de la sécante pour déterminer la valeur de .
Étape 9.2
Remplacez dans les valeurs connues.
Étape 9.3
Simplifiez la valeur de .
Étape 9.3.1
Annulez le facteur commun à et .
Étape 9.3.1.1
Factorisez à partir de .
Étape 9.3.1.2
Annulez les facteurs communs.
Étape 9.3.1.2.1
Factorisez à partir de .
Étape 9.3.1.2.2
Annulez le facteur commun.
Étape 9.3.1.2.3
Réécrivez l’expression.
Étape 9.3.2
Placez le signe moins devant la fraction.
Étape 10
Étape 10.1
Utilisez la définition de la cosécante pour déterminer la valeur de .
Étape 10.2
Remplacez dans les valeurs connues.
Étape 10.3
Annulez le facteur commun à et .
Étape 10.3.1
Factorisez à partir de .
Étape 10.3.2
Annulez les facteurs communs.
Étape 10.3.2.1
Factorisez à partir de .
Étape 10.3.2.2
Annulez le facteur commun.
Étape 10.3.2.3
Réécrivez l’expression.
Étape 11
C’est la solution à chaque valeur trigonométrique.