Pré-calcul Exemples

Trouver les asymptotes f(x)=tan(1/2*(x+pi/6))
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Appliquez la propriété distributive.
Étape 1.2
Associez et .
Étape 1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Multipliez par .
Étape 2
Pour tout , des asymptotes verticales se trouvent sur , où est un entier. Utilisez la période de base pour , , afin de déterminer les asymptotes verticales pour . Définissez l’intérieur de la fonction tangente, , pour égal à afin de déterminer où l’asymptote verticale se produit pour .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Multipliez par .
Étape 3.1.3.2
Multipliez par .
Étape 3.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.5.1
Multipliez par .
Étape 3.1.5.2
Soustrayez de .
Étape 3.1.6
Placez le signe moins devant la fraction.
Étape 3.2
Multipliez les deux côtés de l’équation par .
Étape 3.3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1
Annulez le facteur commun.
Étape 3.3.1.1.2
Réécrivez l’expression.
Étape 3.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.2.1.1.2
Factorisez à partir de .
Étape 3.3.2.1.1.3
Annulez le facteur commun.
Étape 3.3.2.1.1.4
Réécrivez l’expression.
Étape 3.3.2.1.2
Placez le signe moins devant la fraction.
Étape 4
Définissez l’intérieur de la fonction tangente égal à .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Soustrayez des deux côtés de l’équation.
Étape 5.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Multipliez par .
Étape 5.1.3.2
Multipliez par .
Étape 5.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.5.1
Déplacez à gauche de .
Étape 5.1.5.2
Soustrayez de .
Étape 5.2
Multipliez les deux côtés de l’équation par .
Étape 5.3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1.1
Annulez le facteur commun.
Étape 5.3.1.1.2
Réécrivez l’expression.
Étape 5.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.1
Factorisez à partir de .
Étape 5.3.2.1.2
Annulez le facteur commun.
Étape 5.3.2.1.3
Réécrivez l’expression.
Étape 6
La période de base pour se produit sur , où et sont des asymptotes verticales.
Étape 7
Déterminez la période pour déterminer où les asymptotes verticales existent.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
est d’environ qui est positif, alors retirez la valeur absolue
Étape 7.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 7.3
Déplacez à gauche de .
Étape 8
Les asymptotes verticales pour se produisent sur , et chaque , où est un entier.
Étape 9
La tangente n’a que des asymptotes verticales.
Aucune asymptote horizontale
Aucune asymptote oblique
Asymptotes verticales : est un entier
Étape 10