Pré-calcul Exemples

Résoudre en complétant le carré 2x^2+4x-6=0
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Annulez le facteur commun.
Étape 2.2.1.1.2
Divisez par .
Étape 2.2.1.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Factorisez à partir de .
Étape 2.2.1.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.2.1
Factorisez à partir de .
Étape 2.2.1.2.2.2
Annulez le facteur commun.
Étape 2.2.1.2.2.3
Réécrivez l’expression.
Étape 2.2.1.2.2.4
Divisez par .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez par .
Étape 3
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 4
Ajoutez le terme de chaque côté de l’équation.
Étape 5
Simplifiez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Un à n’importe quelle puissance est égal à un.
Étape 5.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 5.2.1.2
Additionnez et .
Étape 6
Factorisez le carré trinomial parfait en .
Étape 7
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 7.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Réécrivez comme .
Étape 7.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 7.3.2.2
Soustrayez de .
Étape 7.3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.4.1
Soustrayez des deux côtés de l’équation.
Étape 7.3.4.2
Soustrayez de .
Étape 7.3.5
La solution complète est le résultat des parties positive et négative de la solution.