Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Simplifiez .
Étape 1.1.1
Simplifiez chaque terme.
Étape 1.1.1.1
Développez à l’aide de la méthode FOIL.
Étape 1.1.1.1.1
Appliquez la propriété distributive.
Étape 1.1.1.1.2
Appliquez la propriété distributive.
Étape 1.1.1.1.3
Appliquez la propriété distributive.
Étape 1.1.1.2
Simplifiez et associez les termes similaires.
Étape 1.1.1.2.1
Simplifiez chaque terme.
Étape 1.1.1.2.1.1
Multipliez par .
Étape 1.1.1.2.1.2
Multipliez par .
Étape 1.1.1.2.1.3
Multipliez par .
Étape 1.1.1.2.2
Soustrayez de .
Étape 1.1.2
Additionnez et .
Étape 1.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 1.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.2
Soustrayez de .
Étape 1.3
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 1.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.3.2
Soustrayez des deux côtés de l’équation.
Étape 1.3.3
Soustrayez de .
Étape 1.3.4
Soustrayez de .
Étape 2
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 3
Ajoutez le terme de chaque côté de l’équation.
Étape 4
Étape 4.1
Simplifiez le côté gauche.
Étape 4.1.1
Élevez à la puissance .
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Élevez à la puissance .
Étape 4.2.1.2
Additionnez et .
Étape 5
Factorisez le carré trinomial parfait en .
Étape 6
Étape 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.2
Simplifiez .
Étape 6.2.1
Réécrivez comme .
Étape 6.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 6.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.3.2.2
Additionnez et .
Étape 6.3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 6.3.4.1
Ajoutez aux deux côtés de l’équation.
Étape 6.3.4.2
Additionnez et .
Étape 6.3.5
La solution complète est le résultat des parties positive et négative de la solution.