Entrer un problème...
Pré-calcul Exemples
Étape 1
Définissez égal à .
Étape 2
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.3
Prenez la sécante inverse des deux côtés de l’équation pour extraire de l’intérieur de la sécante.
Étape 2.4
Simplifiez le côté droit.
Étape 2.4.1
Évaluez .
Étape 2.5
La fonction sécante est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 2.6
Résolvez .
Étape 2.6.1
Supprimez les parenthèses.
Étape 2.6.2
Simplifiez .
Étape 2.6.2.1
Multipliez par .
Étape 2.6.2.2
Soustrayez de .
Étape 2.7
Déterminez la période de .
Étape 2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 2.7.2
Remplacez par dans la formule pour la période.
Étape 2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.7.4
Divisez par .
Étape 2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 3