Pré-calcul Exemples

Résoudre en factorisant cos(3x)=1
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
La valeur exacte de est .
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez par .
Étape 6
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Multipliez par .
Étape 7.1.2
Additionnez et .
Étape 7.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Divisez chaque terme dans par .
Étape 7.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1.1
Annulez le facteur commun.
Étape 7.2.2.1.2
Divisez par .
Étape 8
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
La période de la fonction peut être calculée en utilisant .
Étape 8.2
Remplacez par dans la formule pour la période.
Étape 8.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 9
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 10
Consolidez les réponses.
, pour tout entier