Entrer un problème...
Pré-calcul Exemples
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme où est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Appliquez la règle de produit à .
Étape 4.1.2
Un à n’importe quelle puissance est égal à un.
Étape 4.1.3
Élevez à la puissance .
Étape 4.1.4
Annulez le facteur commun de .
Étape 4.1.4.1
Factorisez à partir de .
Étape 4.1.4.2
Annulez le facteur commun.
Étape 4.1.4.3
Réécrivez l’expression.
Étape 4.1.5
Annulez le facteur commun de .
Étape 4.1.5.1
Factorisez à partir de .
Étape 4.1.5.2
Annulez le facteur commun.
Étape 4.1.5.3
Réécrivez l’expression.
Étape 4.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.1
Additionnez et .
Étape 4.2.2
Soustrayez de .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.7
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.8
Simplifiez le polynôme quotient.
Étape 7
Étape 7.1
Factorisez à partir de .
Étape 7.2
Factorisez à partir de .
Étape 7.3
Factorisez à partir de .
Étape 8
Étape 8.1
Factorisez à partir de .
Étape 8.1.1
Factorisez à partir de .
Étape 8.1.2
Factorisez à partir de .
Étape 8.1.3
Réécrivez comme .
Étape 8.1.4
Factorisez à partir de .
Étape 8.1.5
Factorisez à partir de .
Étape 8.2
Factorisez en utilisant la règle du carré parfait.
Étape 8.2.1
Réécrivez comme .
Étape 8.2.2
Réécrivez comme .
Étape 8.2.3
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 8.2.4
Réécrivez le polynôme.
Étape 8.2.5
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 9
Étape 9.1
Divisez chaque terme dans par .
Étape 9.2
Simplifiez le côté gauche.
Étape 9.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 9.2.2
Divisez par .
Étape 9.3
Simplifiez le côté droit.
Étape 9.3.1
Divisez par .
Étape 10
Définissez le égal à .
Étape 11
Étape 11.1
Ajoutez aux deux côtés de l’équation.
Étape 11.2
Divisez chaque terme dans par et simplifiez.
Étape 11.2.1
Divisez chaque terme dans par .
Étape 11.2.2
Simplifiez le côté gauche.
Étape 11.2.2.1
Annulez le facteur commun de .
Étape 11.2.2.1.1
Annulez le facteur commun.
Étape 11.2.2.1.2
Divisez par .
Étape 12