Pré-calcul Exemples

Resolva para ? tan(theta)=0
tan(θ)=0
Étape 1
Prenez la tangente inverse des deux côtés de l’équation pour extraire θ de l’intérieur de la tangente.
θ=arctan(0)
Étape 2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
La valeur exacte de arctan(0) est 0.
θ=0
θ=0
Étape 3
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de π pour déterminer la solution dans le quatrième quadrant.
θ=π+0
Étape 4
Additionnez π et 0.
θ=π
Étape 5
Déterminez la période de tan(θ).
Appuyez ici pour voir plus d’étapes...
Étape 5.1
La période de la fonction peut être calculée en utilisant π|b|.
π|b|
Étape 5.2
Remplacez b par 1 dans la formule pour la période.
π|1|
Étape 5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre 0 et 1 est 1.
π1
Étape 5.4
Divisez π par 1.
π
π
Étape 6
La période de la fonction tan(θ) est π si bien que les valeurs se répètent tous les π radians dans les deux sens.
θ=πn,π+πn, pour tout entier n
Étape 7
Consolidez les réponses.
θ=πn, pour tout entier n
tan(θ)=0
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]