Entrer un problème...
Pré-calcul Exemples
Étape 1
Multipliez les deux côtés par .
Étape 2
Étape 2.1
Simplifiez le côté gauche.
Étape 2.1.1
Simplifiez .
Étape 2.1.1.1
Appliquez la propriété distributive.
Étape 2.1.1.2
Multipliez par en additionnant les exposants.
Étape 2.1.1.2.1
Déplacez .
Étape 2.1.1.2.2
Multipliez par .
Étape 2.2
Simplifiez le côté droit.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Réécrivez l’expression.
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Factorisez par regroupement.
Étape 3.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Réécrivez comme plus
Étape 3.2.1.3
Appliquez la propriété distributive.
Étape 3.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à et résolvez .
Étape 3.4.1
Définissez égal à .
Étape 3.4.2
Résolvez pour .
Étape 3.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.4.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.4.2.2.1
Divisez chaque terme dans par .
Étape 3.4.2.2.2
Simplifiez le côté gauche.
Étape 3.4.2.2.2.1
Annulez le facteur commun de .
Étape 3.4.2.2.2.1.1
Annulez le facteur commun.
Étape 3.4.2.2.2.1.2
Divisez par .
Étape 3.4.2.2.3
Simplifiez le côté droit.
Étape 3.4.2.2.3.1
Placez le signe moins devant la fraction.
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Résolvez pour .
Étape 3.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.5.2.2.1
Divisez chaque terme dans par .
Étape 3.5.2.2.2
Simplifiez le côté gauche.
Étape 3.5.2.2.2.1
Annulez le facteur commun de .
Étape 3.5.2.2.2.1.1
Annulez le facteur commun.
Étape 3.5.2.2.2.1.2
Divisez par .
Étape 3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 5
Utilisez chaque racine pour créer des intervalles de test.
Étape 6
Étape 6.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.1.2
Remplacez par dans l’inégalité d’origine.
Étape 6.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 6.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.2.2
Remplacez par dans l’inégalité d’origine.
Étape 6.2.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 6.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.3.2
Remplacez par dans l’inégalité d’origine.
Étape 6.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 6.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.4.2
Remplacez par dans l’inégalité d’origine.
Étape 6.4.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 6.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Étape 7
La solution se compose de tous les intervalles vrais.
ou
Étape 8
Convertissez l’inégalité en une notation d’intervalle.
Étape 9