Pré-calcul Exemples

Transformer en un intervalle x^4(1-3x)(5x+2)^3>0
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez égal à .
Étape 2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Réécrivez comme .
Étape 2.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.2.3
Plus ou moins est .
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Divisez chaque terme dans par .
Étape 3.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.2.1.2
Divisez par .
Étape 3.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez le égal à .
Étape 4.2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.2.2.1.2
Divisez par .
Étape 4.2.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.3.1
Placez le signe moins devant la fraction.
Étape 5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Utilisez chaque racine pour créer des intervalles de test.
Étape 7
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.1.2
Remplacez par dans l’inégalité d’origine.
Étape 7.1.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 7.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.2.2
Remplacez par dans l’inégalité d’origine.
Étape 7.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 7.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.3.2
Remplacez par dans l’inégalité d’origine.
Étape 7.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 7.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.4.2
Remplacez par dans l’inégalité d’origine.
Étape 7.4.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 7.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Vrai
Faux
Faux
Vrai
Vrai
Faux
Étape 8
La solution se compose de tous les intervalles vrais.
ou
Étape 9
Convertissez l’inégalité en une notation d’intervalle.
Étape 10