Entrer un problème...
Pré-calcul Exemples
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme où est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Élevez à la puissance .
Étape 4.1.3
Multipliez par .
Étape 4.1.4
Élevez à la puissance .
Étape 4.1.5
Multipliez par .
Étape 4.1.6
Multipliez par .
Étape 4.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.1
Soustrayez de .
Étape 4.2.2
Additionnez et .
Étape 4.2.3
Soustrayez de .
Étape 4.2.4
Additionnez et .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.7
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.8
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.9
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.10
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.11
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.12
Simplifiez le polynôme quotient.
Étape 7
Étape 7.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 7.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 8
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 9
Étape 9.1
Regroupez les termes.
Étape 9.2
Factorisez à partir de .
Étape 9.2.1
Factorisez à partir de .
Étape 9.2.2
Factorisez à partir de .
Étape 9.2.3
Factorisez à partir de .
Étape 9.3
Réécrivez comme .
Étape 9.4
Laissez . Remplacez toutes les occurrences de par .
Étape 9.5
Factorisez à l’aide de la méthode AC.
Étape 9.5.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 9.5.2
Écrivez la forme factorisée avec ces entiers.
Étape 9.6
Remplacez toutes les occurrences de par .
Étape 9.7
Factorisez à partir de .
Étape 9.7.1
Factorisez à partir de .
Étape 9.7.2
Factorisez à partir de .
Étape 9.8
Laissez . Remplacez toutes les occurrences de par .
Étape 9.9
Factorisez en utilisant la règle du carré parfait.
Étape 9.9.1
Réorganisez les termes.
Étape 9.9.2
Réécrivez comme .
Étape 9.9.3
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 9.9.4
Réécrivez le polynôme.
Étape 9.9.5
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 9.10
Remplacez toutes les occurrences de par .
Étape 10
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 11
Étape 11.1
Définissez égal à .
Étape 11.2
Résolvez pour .
Étape 11.2.1
Soustrayez des deux côtés de l’équation.
Étape 11.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 11.2.3
Réécrivez comme .
Étape 11.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 11.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 11.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 11.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12
Étape 12.1
Définissez égal à .
Étape 12.2
Résolvez pour .
Étape 12.2.1
Définissez le égal à .
Étape 12.2.2
Ajoutez aux deux côtés de l’équation.
Étape 13
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 14