Entrer un problème...
Pré-calcul Exemples
Étape 1
Définissez égal à .
Étape 2
Étape 2.1
Factorisez le côté gauche de l’équation.
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Factorisez à partir de .
Étape 2.1.1.4
Factorisez à partir de .
Étape 2.1.1.5
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme .
Étape 2.1.3
Laissez . Remplacez toutes les occurrences de par .
Étape 2.1.4
Factorisez à l’aide de la méthode AC.
Étape 2.1.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.1.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.1.5
Remplacez toutes les occurrences de par .
Étape 2.1.6
Réécrivez comme .
Étape 2.1.7
Factorisez.
Étape 2.1.7.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.1.7.2
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Étape 2.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.2.2
Simplifiez .
Étape 2.3.2.2.1
Réécrivez comme .
Étape 2.3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.2.2.3
Plus ou moins est .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Soustrayez des deux côtés de l’équation.
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 2.6
Définissez égal à et résolvez .
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Résolvez pour .
Étape 2.6.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.6.2.3
Réécrivez comme .
Étape 2.6.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.6.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.6.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.6.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3