Pré-calcul Exemples

Trouver le domaine de définition et l'ensemble d'arrivée p(x)=(4x^2)/(x^3-1)
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Réécrivez comme .
Étape 2.3.2
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, et .
Étape 2.3.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Un à n’importe quelle puissance est égal à un.
Étape 2.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 2.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.6.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.3.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.3.1.2.1
Multipliez par .
Étape 2.6.2.3.1.2.2
Multipliez par .
Étape 2.6.2.3.1.3
Soustrayez de .
Étape 2.6.2.3.1.4
Réécrivez comme .
Étape 2.6.2.3.1.5
Réécrivez comme .
Étape 2.6.2.3.1.6
Réécrivez comme .
Étape 2.6.2.3.2
Multipliez par .
Étape 2.6.2.4
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.4.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.2.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.4.1.2.1
Multipliez par .
Étape 2.6.2.4.1.2.2
Multipliez par .
Étape 2.6.2.4.1.3
Soustrayez de .
Étape 2.6.2.4.1.4
Réécrivez comme .
Étape 2.6.2.4.1.5
Réécrivez comme .
Étape 2.6.2.4.1.6
Réécrivez comme .
Étape 2.6.2.4.2
Multipliez par .
Étape 2.6.2.4.3
Remplacez le par .
Étape 2.6.2.4.4
Réécrivez comme .
Étape 2.6.2.4.5
Factorisez à partir de .
Étape 2.6.2.4.6
Factorisez à partir de .
Étape 2.6.2.4.7
Placez le signe moins devant la fraction.
Étape 2.6.2.5
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.5.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.5.1.2.1
Multipliez par .
Étape 2.6.2.5.1.2.2
Multipliez par .
Étape 2.6.2.5.1.3
Soustrayez de .
Étape 2.6.2.5.1.4
Réécrivez comme .
Étape 2.6.2.5.1.5
Réécrivez comme .
Étape 2.6.2.5.1.6
Réécrivez comme .
Étape 2.6.2.5.2
Multipliez par .
Étape 2.6.2.5.3
Remplacez le par .
Étape 2.6.2.5.4
Réécrivez comme .
Étape 2.6.2.5.5
Factorisez à partir de .
Étape 2.6.2.5.6
Factorisez à partir de .
Étape 2.6.2.5.7
Placez le signe moins devant la fraction.
Étape 2.6.2.6
La réponse finale est la combinaison des deux solutions.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 5
Déterminez le domaine et la plage.
Domaine :
Plage :
Étape 6