Entrer un problème...
Pré-calcul Exemples
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4
Ajoutez aux deux côtés de l’équation.
Étape 4
Replace with to show the final answer.
Étape 5
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Associez les termes opposés dans .
Étape 5.2.3.1
Additionnez et .
Étape 5.2.3.2
Additionnez et .
Étape 5.2.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5.2.5
Associez les termes opposés dans .
Étape 5.2.5.1
Additionnez et .
Étape 5.2.5.2
Additionnez et .
Étape 5.3
Évaluez .
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Associez les termes opposés dans .
Étape 5.3.3.1
Soustrayez de .
Étape 5.3.3.2
Additionnez et .
Étape 5.3.4
Réécrivez comme .
Étape 5.3.4.1
Utilisez pour réécrire comme .
Étape 5.3.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.4.3
Associez et .
Étape 5.3.4.4
Annulez le facteur commun de .
Étape 5.3.4.4.1
Annulez le facteur commun.
Étape 5.3.4.4.2
Réécrivez l’expression.
Étape 5.3.4.5
Simplifiez
Étape 5.3.5
Associez les termes opposés dans .
Étape 5.3.5.1
Soustrayez de .
Étape 5.3.5.2
Additionnez et .
Étape 5.4
Comme et , est l’inverse de .