Pré-calcul Exemples

Trouver la fonction réciproque f(x)=(x-16)^3-11
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4
Ajoutez aux deux côtés de l’équation.
Étape 4
Replace with to show the final answer.
Étape 5
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Additionnez et .
Étape 5.2.3.2
Additionnez et .
Étape 5.2.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5.2.5
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1
Additionnez et .
Étape 5.2.5.2
Additionnez et .
Étape 5.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Soustrayez de .
Étape 5.3.3.2
Additionnez et .
Étape 5.3.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.1
Utilisez pour réécrire comme .
Étape 5.3.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.4.3
Associez et .
Étape 5.3.4.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.4.1
Annulez le facteur commun.
Étape 5.3.4.4.2
Réécrivez l’expression.
Étape 5.3.4.5
Simplifiez
Étape 5.3.5
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.5.1
Soustrayez de .
Étape 5.3.5.2
Additionnez et .
Étape 5.4
Comme et , est l’inverse de .