Entrer un problème...
Pré-calcul Exemples
Étape 1
Le minimum d’une fonction quadratique se produit sur . Si est positif, la valeur minimale de la fonction est .
se produit sur
Étape 2
Étape 2.1
Remplacez les valeurs de et .
Étape 2.2
Supprimez les parenthèses.
Étape 2.3
Simplifiez .
Étape 2.3.1
Annulez le facteur commun à et .
Étape 2.3.1.1
Factorisez à partir de .
Étape 2.3.1.2
Annulez les facteurs communs.
Étape 2.3.1.2.1
Factorisez à partir de .
Étape 2.3.1.2.2
Annulez le facteur commun.
Étape 2.3.1.2.3
Réécrivez l’expression.
Étape 2.3.2
Placez le signe moins devant la fraction.
Étape 2.3.3
Multipliez .
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Multipliez par .
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Appliquez la règle de produit à .
Étape 3.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 3.2.1.3
Élevez à la puissance .
Étape 3.2.1.4
Associez et .
Étape 3.2.1.5
Associez et .
Étape 3.2.1.6
Placez le signe moins devant la fraction.
Étape 3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 3.2.3.1
Multipliez par .
Étape 3.2.3.2
Multipliez par .
Étape 3.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.5
Simplifiez le numérateur.
Étape 3.2.5.1
Multipliez par .
Étape 3.2.5.2
Soustrayez de .
Étape 3.2.6
Placez le signe moins devant la fraction.
Étape 3.2.7
La réponse finale est .
Étape 4
Utilisez les valeurs et pour déterminer où se produit le minimum.
Étape 5