Pré-calcul Exemples

Trouver la valeur maximale/minimale p(x)=(x+5)^2-4
Étape 1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez comme .
Étape 1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Appliquez la propriété distributive.
Étape 1.2.2
Appliquez la propriété distributive.
Étape 1.2.3
Appliquez la propriété distributive.
Étape 1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Multipliez par .
Étape 1.3.1.2
Déplacez à gauche de .
Étape 1.3.1.3
Multipliez par .
Étape 1.3.2
Additionnez et .
Étape 2
Soustrayez de .
Étape 3
Le minimum d’une fonction quadratique se produit sur . Si est positif, la valeur minimale de la fonction est .
se produit sur
Étape 4
Déterminez la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez les valeurs de et .
Étape 4.2
Supprimez les parenthèses.
Étape 4.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Factorisez à partir de .
Étape 4.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.2.1
Factorisez à partir de .
Étape 4.3.1.2.2
Annulez le facteur commun.
Étape 4.3.1.2.3
Réécrivez l’expression.
Étape 4.3.1.2.4
Divisez par .
Étape 4.3.2
Multipliez par .
Étape 5
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 6
Utilisez les valeurs et pour déterminer où se produit le minimum.
Étape 7