Pré-calcul Exemples

Résoudre par substitution y=-x^2+15 , 2x+y=0
,
Étape 1
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Remplacez toutes les occurrences de dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Supprimez les parenthèses.
Étape 2
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Laissez . Remplacez toutes les occurrences de par .
Étape 2.1.2
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Remettez les termes dans l’ordre.
Étape 2.1.2.2
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Factorisez à partir de .
Étape 2.1.2.2.2
Réécrivez comme plus
Étape 2.1.2.2.3
Appliquez la propriété distributive.
Étape 2.1.2.3
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.2.3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2.4
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.1
Divisez chaque terme dans par .
Étape 2.3.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.3.2.2.2.2
Divisez par .
Étape 2.3.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.3.1
Divisez par .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Ajoutez aux deux côtés de l’équation.
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez toutes les occurrences de dans par .
Étape 3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Élevez à la puissance .
Étape 3.2.1.1.2
Multipliez par .
Étape 3.2.1.2
Additionnez et .
Étape 4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Élevez à la puissance .
Étape 4.2.1.1.2
Multipliez par .
Étape 4.2.1.2
Additionnez et .
Étape 5
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 7