Pré-calcul Exemples

Résoudre par substitution y+x^2=7x , y+7x=49
,
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Additionnez et .
Étape 3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Réécrivez comme .
Étape 3.2.1.4
Factorisez à partir de .
Étape 3.2.1.5
Factorisez à partir de .
Étape 3.2.2
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 3.2.2.3
Réécrivez le polynôme.
Étape 3.2.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 3.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Divisez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.3.2.2
Divisez par .
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Divisez par .
Étape 3.4
Définissez le égal à .
Étape 3.5
Ajoutez aux deux côtés de l’équation.
Étape 4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Multipliez par .
Étape 4.2.1.1.2
Élevez à la puissance .
Étape 4.2.1.1.3
Multipliez par .
Étape 4.2.1.2
Soustrayez de .
Étape 5
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 7