Pré-calcul Exemples

Résoudre par substitution xy=7 , x^2+y^2=50
,
Étape 1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Annulez le facteur commun.
Étape 1.2.1.2
Divisez par .
Étape 2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Appliquez la règle de produit à .
Étape 2.2.1.2
Élevez à la puissance .
Étape 3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1.1
Annulez le facteur commun.
Étape 3.2.2.1.1.2
Réécrivez l’expression.
Étape 3.2.2.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.2.1.2.2
Additionnez et .
Étape 3.3
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.2
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 3.3.3
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.3.3.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.3.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.1
Définissez égal à .
Étape 3.3.5.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.6.1
Définissez égal à .
Étape 3.3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3.3.8
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 3.3.9
Résolvez la première équation pour .
Étape 3.3.10
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.3.10.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.10.2.1
Réécrivez comme .
Étape 3.3.10.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.3.10.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.10.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.3.10.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.3.10.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.3.11
Résolvez la deuxième équation pour .
Étape 3.3.12
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.12.1
Supprimez les parenthèses.
Étape 3.3.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.3.12.3
Toute racine de est .
Étape 3.3.12.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.12.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.3.12.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.3.12.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.3.13
La solution à est .
Étape 4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Divisez par .
Étape 5
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez toutes les occurrences de dans par .
Étape 5.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Divisez par .
Étape 6
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez toutes les occurrences de dans par .
Étape 6.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Divisez par .
Étape 7
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez toutes les occurrences de dans par .
Étape 7.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Divisez par .
Étape 8
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez toutes les occurrences de dans par .
Étape 8.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Divisez par .
Étape 9
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Remplacez toutes les occurrences de dans par .
Étape 9.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Divisez par .
Étape 10
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Remplacez toutes les occurrences de dans par .
Étape 10.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Divisez par .
Étape 11
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remplacez toutes les occurrences de dans par .
Étape 11.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Divisez par .
Étape 12
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez toutes les occurrences de dans par .
Étape 12.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Divisez par .
Étape 13
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 14
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 15