Pré-calcul Exemples

Résoudre par substitution y=x^2-3x-4 , y=5x+11
,
Étape 1
Éliminez les côtés égaux de chaque équation et associez.
Étape 2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Soustrayez des deux côtés de l’équation.
Étape 2.1.2
Soustrayez de .
Étape 2.2
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Soustrayez de .
Étape 2.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.1
Élevez à la puissance .
Étape 2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.2.1
Multipliez par .
Étape 2.5.1.2.2
Multipliez par .
Étape 2.5.1.3
Additionnez et .
Étape 2.5.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.4.1
Factorisez à partir de .
Étape 2.5.1.4.2
Réécrivez comme .
Étape 2.5.1.5
Extrayez les termes de sous le radical.
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Simplifiez .
Étape 2.6
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.1
Élevez à la puissance .
Étape 2.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Additionnez et .
Étape 2.6.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.4.1
Factorisez à partir de .
Étape 2.6.1.4.2
Réécrivez comme .
Étape 2.6.1.5
Extrayez les termes de sous le radical.
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Simplifiez .
Étape 2.6.4
Remplacez le par .
Étape 2.7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.1
Élevez à la puissance .
Étape 2.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Additionnez et .
Étape 2.7.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.4.1
Factorisez à partir de .
Étape 2.7.1.4.2
Réécrivez comme .
Étape 2.7.1.5
Extrayez les termes de sous le radical.
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Simplifiez .
Étape 2.7.4
Remplacez le par .
Étape 2.8
La réponse finale est la combinaison des deux solutions.
Étape 3
Évaluez quand .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par .
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Appliquez la propriété distributive.
Étape 3.2.1.2
Multipliez par .
Étape 3.2.2
Additionnez et .
Étape 4
Évaluez quand .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez par .
Étape 4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Appliquez la propriété distributive.
Étape 4.2.1.2
Multipliez par .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.2
Additionnez et .
Étape 5
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 7